Optical anisotropy in individual porous silicon nanoparticles containing multiple chromophores.

نویسندگان

  • Donald J Sirbuly
  • Daniel J Gargas
  • Michael D Mason
  • Paul J Carson
  • Steven K Buratto
چکیده

Polarization anisotropy is investigated in single porous silicon nanoparticles containing multiple chromophores. Two classes of nanoparticles, low current density and high current density, are studied. Low current density samples exhibit red-shifted spectra and contain only one or two chromophores. High current density particles, on average, contain less than four chromophores and display a blue-shifted spectrum. We utilize single-molecule spectroscopy to probe the polarization effects of the particles, and we show that both classes of particles are influenced by a polarized excitation source. These results are exciting at the fundamental level for understanding coupled quantum dot emitters as well as for applications involving single-photon sources or silicon-based polarization-sensitive detectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating individual chromopores within single porous silicon nanoparticles

We use single nanoparticle luminescence microscopy to determine a distribution of individual chromophores present in porous Si nanoparticles. From these distributions, we determine the average number of emitting chromophores in each nanoparticle and the fluorescence emission count rate of a single chromophore within the porous silicon nanoparticle. We also show that the same size nanoparticles ...

متن کامل

In Vivo Time-gated Fluorescence Imaging with Biodegradable Luminescent Porous Silicon Nanoparticles

Fluorescence imaging is one of the most versatile and widely used visualization methods in biomedical research. However, tissue autofluorescence is a major obstacle confounding interpretation of in vivo fluorescence images. The unusually long emission lifetime (5-13 μs) of photoluminescent porous silicon nanoparticles can allow the time-gated imaging of tissues in vivo, completely eliminating s...

متن کامل

Structural and optical properties of n- type porous silicon– effect of etching time

Porous silicon layers have been prepared from n-type silicon wafers of (100) orientation. SEM, FTIR and PL have been used to characterize the morphological and optical properties of porous silicon. The influence of varying etching time in the anodizing solution, on structural and optical properties of porous silicon has been investigated. It is observed that pore size increases with etching tim...

متن کامل

Optical and Thermal Properties of Nanoporous Material and Devices

Title of dissertation: OPTICAL AND THERMAL PROPERTIES OF NANOPOROUS MATERIAL AND DEVICES Kyowon Kim, Doctor of Philosophy, 2015 Dissertation directed by: Professor Thomas E. Murphy Dept. of Electrical & Computer Engineering In this thesis, we investigate the optical and thermal properties of porous silicon and its applications. In first part, porous silicon’s optical properties and application ...

متن کامل

Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices

We have recently developed a new type of porous silicon we name as porous silicon colloids. They consist of almost perfect spherical silicon nanoparticles with a very smooth surface, able to scatter (and also trap) light very efficiently in a large-span frequency range. Porous silicon colloids have unique properties because of the following: (a) they behave as optical microcavities with a high ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 2 6  شماره 

صفحات  -

تاریخ انتشار 2008